17 research outputs found

    EEG-Based Multi-Class Workload Identification Using Feature Fusion and Selection

    Get PDF
    The effectiveness of workload identification is one of the critical aspects in a monitoring instrument of mental state. In this field, the workload is usually recognised as binary classes. There are scarce studies towards multi-class workload identification because the challenge of the success of workload identification is much tough, even though one more workload class is added. Besides, most of the existing studies only utilized spectral power features from individual channels but ignoring abundant inter-channel features that represent the interactions between brain regions. In this study, we utilized features representing intra-channel information and inter-channel information to classify multiple classes of workload based on EEG. We comprehensively compared each category of features contributing to workload identification and elucidated the roles of feature fusion and feature selection for the workload identification. The results demonstrated that feature combination (83.12% in terms of accuracy) enhanced the classification performance compared to individual feature categories (i.e., band power features, 75.90%; connection features, 81.72%, in terms of accuracy). With the F-score feature selection, the classification accuracy was further increased to 83.47%. When the features of graph metric were fused, the accuracy was reached to 84.34%. Our study provided comprehensive performance comparisons between methods and feature categories for the multi-class workload identification and demonstrated that feature selection and fusion played an important role in the enhancement of workload identification. These results could facilitate further studies of multi-class workload identification and practical application of workload identification

    The Effect of Longitudinal Training on Working Memory Capacities: An Exploratory EEG Study

    Get PDF
    The study of working memory (WM) is a hot topic in recent years and accumulating literatures underlying the achievement and neural mechanism of WM. However, the effect of WM training on cognitive functions were rarely studied. In this study, nineteen healthy young subjects participated in a longitudinal design with one week N-back training (N=1,2,3,4). Experimental results demonstrated that training procedure could help the subjects master more complex psychological tasks when comparing the pre-training performance with those post-training. More specifically, the behavior accuracy increased from 68.14±9.34%, 45.09±14.90%, 39.12±12.71%, and 32.11±10.98% for 1-back, 2-back, 3-back and 4-back respectively to 73.52±4.01%, 69.14±5.28%, 69.09±6.41% and 64.41±5.12% after training. Furthermore, we applied elec-troencephalogram (EEG) power and functional connectivity to reveal the neural mechanisms of this beneficial effect and found that the EEG power of δ, θ and α band located in the left temporal and occipital lobe increased significantly. Meanwhile, the functional connectivity strength also increased obviously in δ and θ band. In sum, we showed positive effect of WM training on psychological performance and explored the neural mechanisms. Our findings may have the implications for enhancing the performance of participants who are prone to cognitive

    Diverse Feature Blend Based on Filter-Bank Common Spatial Pattern and Brain Functional Connectivity for Multiple Motor Imagery Detection

    Get PDF
    Motor imagery (MI) based brain-computer interface (BCI) is a research hotspot and has attracted lots of attention. Within this research topic, multiple MI classification is a challenge due to the difficulties caused by time-varying spatial features across different individuals. To deal with this challenge, we tried to fuse brain functional connectivity (BFC) and one-versus-the-rest filter-bank common spatial pattern (OVR-FBCSP) to improve the robustness of classification. The BFC features were extracted by phase locking value (PLV), representing the brain inter-regional interactions relevant to the MI, whilst the OVR-FBCSP is used to extract the spatial-frequency features related to the MI. These diverse features were then fed into a multi-kernel relevance vector machine (MK-RVM). The dataset with three motor imagery tasks (left hand MI, right hand MI, and feet MI) was used to assess the proposed method. Experimental results not only showed that the cascade structure of diverse feature fusion and MK-RVM achieved satisfactory classification performance (average accuracy: 83.81%, average kappa: 0.76), but also demonstrated that BFC plays a supplementary role in the MI classification. Moreover, the proposed method has a potential to be integrated into multiple MI online detection owing to the advantage of strong time-efficiency of RVM

    Performance Enhancement of P300 Detection by Multi-Scale-CNN

    Get PDF
    P300-based spelling system is one of the most popular brain-computer interface applications. Its success largely depends on performance, including the information transmission rate (ITR) and detection rate (i.e., accuracy). To achieve good performance, we proposed a multi-scale convolutional neural network (MS-CNN) model, which consists of seven layers. First, an upfront dataset was used to train the MS-CNN, aiming to obtain a subject-unspecific model (universal model) for P300 detection. Second, this universal model was adapted by a portion of data derived from a subject to update the model to obtain a subject-specific model by incorporating a transfer learning technique. We applied the proposed model in the BCI Controlled Robot Contest at the 2019 World Robot Conference, and our performance was the best among the teams in the contest. In the contest, ten healthy young subjects were randomly assigned by the contest committee to assess the model. Our model achieved the best P300 detection performance (higher accuracy with less repetition time). The ITR for the subject-unspecific case was 13.49 bits/min while the ITR for the subject-specific case was 12.13 bits/min when the repetitions were fewer than six. It is believed that our method may pave a promising path for taking a further step toward efficient implementation of P300-based spelling system

    Functional connectivity changes are correlated with sleep improvement in chronic insomnia patients after rTMS treatment

    Get PDF
    BackgroundRepetitive transcranial magnetic stimulation (rTMS) has been increasingly used as a treatment modality for chronic insomnia disorder (CID). However, our understanding of the mechanisms underlying the efficacy of rTMS is limited.ObjectiveThis study aimed to investigate rTMS-induced alterations in resting-state functional connectivity and to find potential connectivity biomarkers for predicting and tracking clinical outcomes after rTMS.MethodsThirty-seven patients with CID received a 10-session low frequency rTMS treatment applied to the right dorsolateral prefrontal cortex. Before and after treatment, the patients underwent resting-state electroencephalography recordings and a sleep quality assessment using the Pittsburgh Sleep Quality Index (PSQI).ResultsAfter treatment, rTMS significantly increased the connectivity of 34 connectomes in the lower alpha frequency band (8–10 Hz). Additionally, alterations in functional connectivity between the left insula and the left inferior eye junction, as well as between the left insula and medial prefrontal cortex, were associated with a decrease in PSQI score. Further, the correlation between the functional connectivity and PSQI persisted 1 month after the completion of rTMS as evidenced by subsequent electroencephalography (EEG) recordings and the PSQI assessment.ConclusionBased on these results, we established a link between alterations in functional connectivity and clinical outcomes of rTMS, which suggested that EEG-derived functional connectivity changes were associated with clinical improvement of rTMS in treating CID. These findings provide preliminary evidence that rTMS may improve insomnia symptoms by modifying functional connectivity, which can be used to inform prospective clinical trials and potentially for treatment optimization

    World Congress Integrative Medicine & Health 2017: Part one

    Get PDF

    Measuring the health-related Sustainable Development Goals in 188 countries : a baseline analysis from the Global Burden of Disease Study 2015

    Get PDF
    Background In September, 2015, the UN General Assembly established the Sustainable Development Goals (SDGs). The SDGs specify 17 universal goals, 169 targets, and 230 indicators leading up to 2030. We provide an analysis of 33 health-related SDG indicators based on the Global Burden of Diseases, Injuries, and Risk Factors Study 2015 (GBD 2015). Methods We applied statistical methods to systematically compiled data to estimate the performance of 33 health-related SDG indicators for 188 countries from 1990 to 2015. We rescaled each indicator on a scale from 0 (worst observed value between 1990 and 2015) to 100 (best observed). Indices representing all 33 health-related SDG indicators (health-related SDG index), health-related SDG indicators included in the Millennium Development Goals (MDG index), and health-related indicators not included in the MDGs (non-MDG index) were computed as the geometric mean of the rescaled indicators by SDG target. We used spline regressions to examine the relations between the Socio-demographic Index (SDI, a summary measure based on average income per person, educational attainment, and total fertility rate) and each of the health-related SDG indicators and indices. Findings In 2015, the median health-related SDG index was 59.3 (95% uncertainty interval 56.8-61.8) and varied widely by country, ranging from 85.5 (84.2-86.5) in Iceland to 20.4 (15.4-24.9) in Central African Republic. SDI was a good predictor of the health-related SDG index (r(2) = 0.88) and the MDG index (r(2) = 0.2), whereas the non-MDG index had a weaker relation with SDI (r(2) = 0.79). Between 2000 and 2015, the health-related SDG index improved by a median of 7.9 (IQR 5.0-10.4), and gains on the MDG index (a median change of 10.0 [6.7-13.1]) exceeded that of the non-MDG index (a median change of 5.5 [2.1-8.9]). Since 2000, pronounced progress occurred for indicators such as met need with modern contraception, under-5 mortality, and neonatal mortality, as well as the indicator for universal health coverage tracer interventions. Moderate improvements were found for indicators such as HIV and tuberculosis incidence, minimal changes for hepatitis B incidence took place, and childhood overweight considerably worsened. Interpretation GBD provides an independent, comparable avenue for monitoring progress towards the health-related SDGs. Our analysis not only highlights the importance of income, education, and fertility as drivers of health improvement but also emphasises that investments in these areas alone will not be sufficient. Although considerable progress on the health-related MDG indicators has been made, these gains will need to be sustained and, in many cases, accelerated to achieve the ambitious SDG targets. The minimal improvement in or worsening of health-related indicators beyond the MDGs highlight the need for additional resources to effectively address the expanded scope of the health-related SDGs.Peer reviewe

    Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015 : a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    Background Improving survival and extending the longevity of life for all populations requires timely, robust evidence on local mortality levels and trends. The Global Burden of Disease 2015 Study (GBD 2015) provides a comprehensive assessment of all-cause and cause-specific mortality for 249 causes in 195 countries and territories from 1980 to 2015. These results informed an in-depth investigation of observed and expected mortality patterns based on sociodemographic measures. Methods We estimated all-cause mortality by age, sex, geography, and year using an improved analytical approach originally developed for GBD 2013 and GBD 2010. Improvements included refinements to the estimation of child and adult mortality and corresponding uncertainty, parameter selection for under-5 mortality synthesis by spatiotemporal Gaussian process regression, and sibling history data processing. We also expanded the database of vital registration, survey, and census data to 14 294 geography-year datapoints. For GBD 2015, eight causes, including Ebola virus disease, were added to the previous GBD cause list for mortality. We used six modelling approaches to assess cause-specific mortality, with the Cause of Death Ensemble Model (CODEm) generating estimates for most causes. We used a series of novel analyses to systematically quantify the drivers of trends in mortality across geographies. First, we assessed observed and expected levels and trends of cause-specific mortality as they relate to the Socio-demographic Index (SDI), a summary indicator derived from measures of income per capita, educational attainment, and fertility. Second, we examined factors affecting total mortality patterns through a series of counterfactual scenarios, testing the magnitude by which population growth, population age structures, and epidemiological changes contributed to shifts in mortality. Finally, we attributed changes in life expectancy to changes in cause of death. We documented each step of the GBD 2015 estimation processes, as well as data sources, in accordance with Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER). Findings Globally, life expectancy from birth increased from 61.7 years (95% uncertainty interval 61.4-61.9) in 1980 to 71.8 years (71.5-72.2) in 2015. Several countries in sub-Saharan Africa had very large gains in life expectancy from 2005 to 2015, rebounding from an era of exceedingly high loss of life due to HIV/AIDS. At the same time, many geographies saw life expectancy stagnate or decline, particularly for men and in countries with rising mortality from war or interpersonal violence. From 2005 to 2015, male life expectancy in Syria dropped by 11.3 years (3.7-17.4), to 62.6 years (56.5-70.2). Total deaths increased by 4.1% (2.6-5.6) from 2005 to 2015, rising to 55.8 million (54.9 million to 56.6 million) in 2015, but age-standardised death rates fell by 17.0% (15.8-18.1) during this time, underscoring changes in population growth and shifts in global age structures. The result was similar for non-communicable diseases (NCDs), with total deaths from these causes increasing by 14.1% (12.6-16.0) to 39.8 million (39.2 million to 40.5 million) in 2015, whereas age-standardised rates decreased by 13.1% (11.9-14.3). Globally, this mortality pattern emerged for several NCDs, including several types of cancer, ischaemic heart disease, cirrhosis, and Alzheimer's disease and other dementias. By contrast, both total deaths and age-standardised death rates due to communicable, maternal, neonatal, and nutritional conditions significantly declined from 2005 to 2015, gains largely attributable to decreases in mortality rates due to HIV/AIDS (42.1%, 39.1-44.6), malaria (43.1%, 34.7-51.8), neonatal preterm birth complications (29.8%, 24.8-34.9), and maternal disorders (29.1%, 19.3-37.1). Progress was slower for several causes, such as lower respiratory infections and nutritional deficiencies, whereas deaths increased for others, including dengue and drug use disorders. Age-standardised death rates due to injuries significantly declined from 2005 to 2015, yet interpersonal violence and war claimed increasingly more lives in some regions, particularly in the Middle East. In 2015, rotaviral enteritis (rotavirus) was the leading cause of under-5 deaths due to diarrhoea (146 000 deaths, 118 000-183 000) and pneumococcal pneumonia was the leading cause of under-5 deaths due to lower respiratory infections (393 000 deaths, 228 000-532 000), although pathogen-specific mortality varied by region. Globally, the effects of population growth, ageing, and changes in age-standardised death rates substantially differed by cause. Our analyses on the expected associations between cause-specific mortality and SDI show the regular shifts in cause of death composition and population age structure with rising SDI. Country patterns of premature mortality (measured as years of life lost [YLLs]) and how they differ from the level expected on the basis of SDI alone revealed distinct but highly heterogeneous patterns by region and country or territory. Ischaemic heart disease, stroke, and diabetes were among the leading causes of YLLs in most regions, but in many cases, intraregional results sharply diverged for ratios of observed and expected YLLs based on SDI. Communicable, maternal, neonatal, and nutritional diseases caused the most YLLs throughout sub-Saharan Africa, with observed YLLs far exceeding expected YLLs for countries in which malaria or HIV/AIDS remained the leading causes of early death. Interpretation At the global scale, age-specific mortality has steadily improved over the past 35 years; this pattern of general progress continued in the past decade. Progress has been faster in most countries than expected on the basis of development measured by the SDI. Against this background of progress, some countries have seen falls in life expectancy, and age-standardised death rates for some causes are increasing. Despite progress in reducing age-standardised death rates, population growth and ageing mean that the number of deaths from most non-communicable causes are increasing in most countries, putting increased demands on health systems. Copyright (C) The Author(s). Published by Elsevier Ltd.Peer reviewe

    The Effect of Multiple Factors on Working Memory Capacities: Aging, Task difficulty, and Training

    Get PDF
    Goal : Working memory (WM) is a memory system with a limited capacity that can process and store information temporarily in the performing of cognitive tasks. Despite WM is known to be influenced by age, the difficulty of tasks and trained or not from behavior studies, little is known about their relationships from the aspect of the brain functional network. Our goal was to explore the factor of aging-related changes of WM with brain functional networks. Methods: In this study, 25 healthy elderly and 23 healthy young volunteers were recruited for electroencephalogram (EEG) recording during the visual WM task with four difficulty levels (1-4 backs). In each back, we repeat the experiment with four sessions, and we add training sections between session one and session two as well as between session two and session three. However, we remove any training section between session three and session four in order to evaluate the impact of forgetting on WM in different age groups. After the experiment, we utilized graph theoretical analysis to characterize the brain functional network in three frequency bands (alpha, beta, and theta). Results: From the well-designed experiment, we found that physiological aging influences brain network connectivity and makes the functional brain network less differentiated. Moreover, there is an inverse relationship between alpha activity and WM load for the elderly group, which is absent in the young group. At the same time, theta band activity will be correlated with behavioral performance for the elderly group with WM training between sessions, which is also absent in the young group. To further study the influence of difficulty of tasks and training on the WM, we distinguish the tasks with quantified topological characteristics, and the classification results manifest that the training is more effective for the young group. Finally, through the establishment of a brain map before and after training, we find that the right parietal lobe plays an important role in the training of WM for the elderly group whereas the beta band plays an important role in WM for both the elderly group and the young group. Conclusion: Taken together, our findings clarify the underlying mechanism of WM under different frequency bands in terms of physiological aging, the influence of training, and task difficulty. Significance: the working memory capacities can be uncovered in terms of the combination of three-way ANOVA and EEG-based graph theoretical analysis

    Predicting response to repetitive transcranial magnetic stimulation in patients with chronic insomnia disorder using electroencephalography: A pilot study

    No full text
    Predicting responsvienss to repetitive transcranial magnetic stimulation (rTMS) can facilitate personalized treatments with improved efficacy; however, predictive features related to this response are still lacking. We explored whether resting-state electroencephalography (rsEEG) functional connectivity measured at baseline or during treatment could predict the response to 10-day rTMS targeted to the right dorsolateral prefrontal cortex (DLPFC) in 36 patients with chronic insomnia disorder (CID). Pre- and post-treatment rsEEG scans and the Pittsburgh Sleep Quality Index (PSQI) were evaluated, with an additional rsEEG scan conducted after four rTMS sessions. Machine-learning approaches were employed to assess the ability of each connectivity measure to distinguish between responders (PSQI improvement > 25%) and non-responders (PSQI improvement ≤ 25%). Furthermore, we analyzed the connectivity trends of the two subgroups throughout the treatment. Our results revealed that the machine learning model based on baseline theta connectivity achieved the highest accuracy (AUC = 0.843) in predicting treatment response. Decreased baseline connectivity at the stimulated site was associated with higher responsiveness to TMS, emphasizing the significance of functional connectivity characteristics in rTMS treatment. These findings enhance the clinical application of EEG functional connectivity markers in predicting treatment outcomes
    corecore